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Abstract

Vision-Language-Action (VLA) models have shown strong potential for general-purpose robotic
manipulation, but their reliance on expert demonstrations limits their ability to learn from failures
and perform self-corrections. Reinforcement learning (RL) addresses these through self-improving
interactions with the physical environment, but suffers from high sample complexity on real robots.
We introduce World-Model-based Policy Optimization (WMPO), a principled framework for on-
policy VLA RL without interacting with the real environment. In contrast to widely used latent
world models, WMPO focuses on pixel-based predictions that align the “imagined" trajectories
with the VLA features pretrained with web-scale images. Crucially, WMPO enables the policy
to perform on-policy GRPO that provides stronger performance than the often-used off-policy
methods. Extensive experiments in both simulation and real-robot settings demonstrate that
WMPO (i) substantially improves sample efficiency, (ii) achieves stronger overall performance, (iii)
exhibits emergent behaviors such as self-correction, and (iv) demonstrates robust generalization
and lifelong learning capabilities.
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1 Introduction

Vision-Language-Action (VLA) models [1–3] have emerged as a promising paradigm for general-purpose
robotic manipulation, enabling robots to follow natural language instructions in complex, unstructured
environments. The dominant approach for training these models is imitation learning (IL) from large-scale
human demonstrations [4]. While effective in mimicking demonstrated behaviors, IL-trained policies are often
brittle. When encountering out-of-distribution states not seen during training, they can take suboptimal
actions that lead to compounding errors [5], making task completion or recovery nearly impossible (Fig. 1a).

Reinforcement learning (RL) [6] offers a natural solution to this brittleness by allowing an agent to learn
and improve through active interaction with its environment. This self-improvement process can lead to
policies that are more robust and capable of recovering from failure. However, applying RL directly to
real robots is notoriously sample-inefficient, requiring millions of interactions that are impractical, unsafe,
and time-consuming to collect (Fig.1b). Recent efforts to improve sample efficiency fall into two main
strategies. The first leverages human intervention to guide learning [7–9], which reduces exploration cost but
is labor-intensive and hard to scale. The second relies on simulation to reduce real-world interactions [10, 11],
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Figure 1 Three different VLA training paradigms: (a) Imitation learning learns from human demonstrations but lacks
the ability for learning from failures and self-correction; (b) Real-world RL improves policy through direct interaction
but suffers from high sampling costs and difficulty in achieving on-policy RL; (c) WMPO pretrains a world model on
large-scale robotic trajectories and fine-tunes it with limited policy behavior data, enabling sample-efficient on-policy
RL for VLA without real-world interaction.

but is limited by the difficulty of building accurate simulators for diverse scenarios.

The advent of large-scale generative models, particularly video-generative world models [12, 13], presents
a compelling new frontier for leveraging model-based RL [14] to mitigate the sample inefficiency challenge
in VLA RL. These models can learn the dynamics of the world from data and simulate future transitions,
offering a path to scalable RL without costly real-world explorations. Nevertheless, integrating these models
with existing VLAs remains a challenge. Many classical model-based RL approaches [15–20] operate in an
abstract latent space, which creates a fundamental mismatch with powerful VLA foundation models that
are pretrained on real-world images. The rich, pretrained visual understanding of VLAs cannot be directly
applied within a mismatched latent dynamics model. We argue that leveraging a pixel-space video-generative
world model is crucial, as it allows the VLA policy to operate on generated visual data that is consistent with
its pretraining, effectively bridging the world model with the policy’s pre-trained knowledge.

To this end, we propose World Model-based Policy Optimization (WMPO), as illustrated in Fig. 1c, a principled
framework that grounds VLA RL entirely in an action-conditioned video world model. By pretraining a
high-fidelity, pixel-space video-generative model on millions of robotic trajectories[21], WMPO leverages
realistic visual dynamics to create a scalable training environment for downstream tasks.

WMPO incorporates several key innovations. First, to mitigate the state-distribution mismatch between
expert demonstrations and policy rollouts, we introduce policy behavior alignment, finetuning the world model
with behavioral data collected by the policy itself. Second, short-horizon prediction makes it difficult to define
accurate rewards and is prone to reward hacking. To address this, WMPO generates complete trials through
clip-level autoregressive video generation, enabling more reliable outcome-based reward assignment. While this
design supports long-horizon rollouts, it also introduces challenges such as visual distortion and action–frame
misalignment. WMPO addresses these with noisy-frame conditioning and frame-level action control, ensuring
robustness and accurate trajectory simulation. Third, we train a lightweight reward model that predicts task
success or failure, providing a learned sparse reward signal and avoiding both complex reward shaping and
reward hacking. Together, these components form a self-contained environment that enables on-policy RL
entirely “in imagination”. Specifically, we adopt Group Relative Policy Optimization (GRPO) (Shao et al.,
2024), whose robustness and scalability have been demonstrated in DeepSeek-AI et al. [22]. Notably, WMPO
naturally supports repeated rollouts from the same initial state, which is difficult to realize in the physical
world but crucial for large-scale GRPO training.

We conduct extensive experiments in both Mimicgen simulation environments [23] and real-world environments
to validate the effectiveness of WMPO. Our results show that WMPO achieves substantially higher sample
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efficiency and consistently outperforms VLA RL methods that directly optimize with real trajectories. Crucially,
we provide qualitative evidence of emergent behaviors, where the WMPO-trained policy demonstrates self-
correction strategies not present in the demonstration data and often completes tasks faster and more smoothly,
without noticeable stalls. We further demonstrate WMPO’s strong generalization compared to offline RL
methods, as well as its capacity for lifelong learning through alternating updates between the VLA policy and
the world model. Taken together, these findings highlight WMPO as a scalable and generalizable paradigm
for advancing VLA RL.

2 Related Work

Vision-Language-Action Models. Vision-Language-Action (VLA) models aim to map visual inputs
and natural language instructions into executable robotic actions, enabling general-purpose manipulation.
Most VLAs build upon pretrained vision-language models (VLMs) and are further fine-tuned on robotic
trajectories, thereby inheriting strong visual grounding and language understanding. This progress has been
driven both by large-scale demonstration collections [21] and by advances in action parameterization, including
discrete next-token prediction [2], parallel decoding [24], and continuous flow-based heads [25]. Despite these
advances in data and model design, existing VLAs largely remain within the imitation learning (IL) paradigm,
making them brittle when encountering out-of-distribution states and unable to leverage failed executions for
improvement [5].

Reinforcement Learning for VLA Models. RL provides a natural complement to IL by enabling
policies to learn from interaction, thereby improving robustness and recovery capabilities. However, applying
on-policy RL to VLA remains challenging due to severe sample inefficiency and substantial system-level
complexity. Prior works can be broadly divided into two strategies. The first introduces human intervention
to guide exploration, e.g., supplying corrective signals when policies encounter unrecoverable states [8, 9, 26].
While effective at reducing exploration cost, this approach requires continuous human supervision, making it
labor-intensive and difficult to scale. The second attempts to perform RL directly in simulation or in the
real world. For instance, Zhang et al. [27] adopt trajectory-level DPO [28], while others apply PPO [29] or
GRPO [30] to optimize VLA policies in simulation [10, 11]. These approaches avoid human supervision but
still suffer from poor sample efficiency, and constructing accurate simulators for each real-world scenario
introduces prohibitive engineering overhead. In contrast, WMPO enables policy optimization entirely within
a learned world model, substantially improving sample efficiency and scalability.

World Models. World models aim to mitigate the need for costly real-world interactions by learning
generative dynamics and enabling policies to learn from “imagine” trajectories. Early approaches [16–18]
learned world model in the latent space of recurrent state-space models, which provided efficient but overly
abstract rollouts. More recent work introduced diffusion-based world models, showing that retaining pixel-level
fidelity is crucial for RL with Gaussian policies [31, 32]. Building on this trend, large-scale video world
models [12, 13] have demonstrated impressive generality across diverse domains. However, when applied
to robotics, they suffer from distribution mismatch—struggling to faithfully reproduce policy rollouts and
fine-grained robot–object interactions. In contrast, WMPO addresses these challenges through policy behavior
alignment and, for the first time, verifies the feasibility of leveraging high-fidelity world models for scalable
VLA RL.

3 World Model-Based Policy Optimization

We introduce World Model-based Policy Optimization (WMPO), a novel framework for learning complex,
vision-based robotic manipulation policies. The WMPO framework is grounded in the principles of model-
based RL, where policy optimization is performed entirely within a learned world model, thereby eliminating
the need for costly real-world interactions. WMPO operates directly in the pixel space, instead of latent
space, which better bridges the pretrained VLA features from web-scale video-action pairs with the “imagined"
trajectories. Specifically, the world model is trained to accurately reflect the policy’s behavior through a
process we call Policy Behavior Alignment, where it is fine-tuned on a small set of real trajectories collected
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Figure 2 WMPO starts from an initial state s0. The overall training procedure consists of three components: (1)
Imagined Trajectory Generation, where policy model πθold and world model pϕ interact alternately to generate a full
imagined trajectory; (2) Trajectory Sampling, where multiple trajectories are sampled and evaluated by the reward
model Rψ; and (3) Policy Update, where the policy parameters θ are optimized via Eq. 4. This process is iteratively
repeated throughout training.

from the policy itself. This ensures the model can faithfully simulate diverse scenarios, including failures. We
also introduce noisy frame conditioning and frame-level action control techniques to overcome the problems of
visual distortion and action-frame misalignment in long-horizon video prediction. With these modifications, we
are able to perform strong on-policy Group Relative Policy Optimization (GRPO) using trajectories imagined
by the learned world model, which significantly enhances sample efficiency compared to direct RL methods.
Fig. 2 illustrates an overview of the training procedure of WMPO.

3.1 Problem Formulation

We formulate the VLA manipulation task as a decision-making problem in the form of an MDP M =
(S,A, P,R).

• State space. S = I × G, where I denotes the image observation space, i.e., image sequences I0:K , and
G denotes the language instruction space. Here, we make the assumption that robot states can be solely
defined by their image observations. For more complicated setups, e.g., Partially Observable MDPs
(POMDPs) [33, 34], we leave them for future studies.

• Action space. A denotes the space of action chunks, i.e., sequences of robot actions. Each action in an
action chunk of length K, at ∈ RK×D, represents a D-DoF (degree of freedom) control vector. For policy
optimization, each dimension is discretized into 256 bins. Specifically, we learn to sample action chunks
using a parameterized VLA policy, a ∼ πθ(a | s).

• Transition function. P : S×A → S is realized by a parameterized world model st+1 ∼ pϕ(st+1 | st, at), which
generates future observations conditioned on past observations and actions. In particular, we sample imagined
trajectories τ = {s0, ŝ1, . . . , ŝT } by iteratively sampling from the world model ŝt+1 ∼ pϕ(st+1 | ŝt, at) and
the VLA policy at ∼ pθ(at | st), given an initial state s0 sampled in the real environment.

• Reward function. The reward is given by a learned model Rψ that determines task success from the full
trajectory, assigning a binary outcome Rψ(τ) ∈ {0, 1}.

Our objective is to train a policy πθ(a | s) such that the predicted cumulative return of the imagined
trajectories will be maximized

max
θ

Eτ∼πθ,pϕ [Rψ(τ)] . (1)

This formulation highlights a general paradigm: RL for VLA can be decoupled from real-world interactions
by leveraging a generative world model as the imaginary training ground.
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3.2 Generative World Model

Imagined Trajectory Generation. Given c initial frames I0:c, the policy πθ takes the most recent m
frames and language instruction g as input and predicts an action chunk 1 , i.e., ai:i+K ∼ πθ(Ii−m:i, g). The
world model pϕ then conditions on the last c observed frames and the predicted action chunk to generate the
next K frames:

Ii:i+K ∼ pϕ(Ii−c:i, ai:i+K). (2)

Repeating this process until a maximum length N yields a trajectory τ = {I0:N , a0:N}. A reward model Rψ
evaluates the frames in τ and outputs a binary label y = Rψ(I0:N ) ∈ {0, 1}. Thus, each imagined trajectory
in the world model is represented as a labeled pair (τ, y), which is then used for policy optimization.

Model Architecture. Our world model is based on a video diffusion backbone inherited from OpenSora [35],
with modifications designed for simulating robot–object interactions. Specifically, we replace the 3D VAE in
OpenSora with the 2D VAE from SDXL [36], which better preserves fine-grained motion details and avoids
temporal distortions caused by excessive compression. Consequently, the diffusion process operates in the
VAE’s latent space. When applying the imagined trajectory to VLA optimization, we decode the images back
into pixel space to better leverage the pretrained knowledge, rather than retraining the VLA in a new latent
space such as that from RSSM [18].

Since our world model generates full trajectories in an autoregressive manner—using previously generated
frames as conditioning for future predictions—errors can accumulate, leading to severe degradation over
long horizons, ultimately leading to failed prediction. To mitigate this issue, we introduce a noisy-frame
conditioning technique: during training, conditional frames Ii−m:i are perturbed with diffusion noise at
50/1000 steps rather than kept clean, which improves robustness to imperfect conditioning. As a result, the
world model achieves stable long-horizon generation, producing trajectories of hundreds of frames without
noticeable quality loss.

To enable precise action conditioning, inspired by Zhu et al. [37], we incorporate a frame-level action control
mechanism for better action-frame alignment. Specifically, we extend the AdaLN [38] block to inject both
action signals and diffusion timestep embeddings at the frame level. For each action ai, an MLP generates
modulation coefficients: scale γi1 and shift βi1 for the LayerNorm output, and scale αi1 for the residual
connection of either the MHA or FFN block. Let xi denote the feature representation at frame i; the update
rule within each transformer block is given as: xi = xi + (1 + αi1) · Block

(
γi1 · LayerNorm(xi) + βi1

)
.

Policy Behavior Alignment. We pretrain the world model on Open X-Embodiment (OXE) [21] trajectories,
which offer diverse demonstrations of robot interactions and endow the model with broad knowledge of physical
dynamics. However, because OXE trajectories primarily consist of successful executions, failure scenarios
are underrepresented in the observation distribution. Likewise, training only on expert demonstrations from
downstream tasks leaves the model unable to simulate failures, making the imagined trajectories unsuitable
for training. To address this mismatch, we fine-tune the world model on real rollout trajectories collected
from the policy itself, thereby adapting it to the downstream (state, action) distribution and capturing failure
modes more faithfully. Without this adaptation, the model’s imagination of failure cases remains brittle and
unfaithful.

3.3 Reward Model

A key requirement for scalable policy optimization in the world model is automatically judging whether
an imagined trajectory indicates task success. We construct a lightweight reward model trained on real
trajectories. Given a trajectory τ = {I0:N}, we define a clip of length L as ci = Ii−L:i. The terminal clip cN
of a successful trajectory serves as a positive sample, whereas negatives are drawn from {ci : L ≤ i ≤ N − L}
of successful trajectories and from arbitrary clips of failed trajectories. To address class imbalance, we balance

1To avoid confusion in subscripts, we specify that i is used as the frame-level subscript and t as the state-level subscript,
where a state often includes multiple frames. N and T denote the maximum length of an imagined trajectory at the frame level
and state level, respectively.
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the number of positive and negative samples within each training batch. The reward model, implemented as a
VideoMAE [39] encoder with a linear head, is trained with binary cross-entropy loss. At inference, the model
applies a sliding window with stride s over τ to compute the success probability of each clip. A trajectory is
classified as successful if any clip exceeds a threshold τthr, which is selected via validation experiments.

3.4 On-Policy Reinforcement Learning with WMPO

Reinforcement learning in VLA tasks faces two key bottlenecks. (1) Physical interaction bottleneck. Unlike
LLM settings where feedback is cheap, VLA tasks require repeated rollouts in the physical world, which
incur high hardware costs, safety concerns, and limited scalability. (2) Value estimation bias by off-policy RL.
Given the aforementioned physical constraints, existing real-world RL methods often consider off-policy RL
methods [8, 40–42]. However, off-policy methods naturally cause value estimation errors [43] and on-policy
methods are often favorable for better performance.

To overcome these challenges, we optimize policies entirely within a world model: replacing costly real-world
rollouts with model-generated trajectories alleviates reliance on physical interaction and enables scalable
online learning. We adopt Group Relative Policy Optimization (GRPO) as the policy optimization algorithm,
since it provides stable and scalable training in settings with sparse rewards. In our case, state transitions are
simulated by the world model (Eq. 2), and rewards are binary with Rψ(τ) ∈ {0, 1} depending on task success.

Trajectory Sampling. From each initial frames I0:c sample from real environment D, we sample a group
of imagined trajectories {τ1, . . . , τG} from current policy πθold inside the world model. The reward model
is then employed to predict the success or failure of each trajectory. To mitigate vanishing gradients, we
adopt a Dynamic Sampling strategy [44]: if all trajectories in a group are predicted to be successful or all
unsuccessful, the group is discarded and additional rollouts are sampled until the batch is fully populated.
The log-probability of each action chunk under πθold is pre-computed as reference:

log πθold(at | st) =
K∑
i=1

D∑
j=1

log πθold

(
ai,jt | st

)
, (3)

where at denotes the action chunk at time t, and ai,jt represents the i-th action in the j-th DoF.

Policy Update. Following DAPO [44], we remove the KL divergence regularization so that no reference
model is required during training, thereby reducing memory consumption and encouraging the policy to
explore novel behaviors. The final training objective is given by

J (θ) = Es0∼D,{τi}G
i=1∼πθold

[
1

G

G∑
i=1

1

T

T∑
t=0

min
(
ri,t(θ)Âi, clip(ri,t(θ), 1− ϵlow, 1 + ϵhigh)Âi

)]
, (4)

with

ri,t(θ) =
πθ(ai,t | si,t)
πθold(ai,t | si,t)

, Âi =
Ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
. (5)

Here ri,t(θ) is the probability ratio between new and old policies at step t of trajectory τi, Ri = R(τi), and Âi
is the normalized advantage of trajectory τi over the horizon N . The overall training pipeline is detailed in
Algorithm 1 in Appendix A.

4 Experiments

We conduct extensive experiments to evaluate the effectiveness of WMPO, focusing on the following questions:
(1) can WMPO outperform online and offline RL in simulation environments; (2) how does the behavior of
WMPO differ from imitation learning; (3) can WMPO generalize to unseen settings; (4) can WMPO achieve
iterative improvement during deployment; and (5) can WMPO be applied on a real robot?
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Figure 3 Behavior analysis of the Square task (inserting the square into the stick) shows that, compared with the base
policy, WMPO demonstrates the ability to self-correct.

4.1 Experiment Settings

Implementation Details In this work, we fine-tune OpenVLA-OFT [24] via imitation learning on target
manipulation tasks as our base policy. For simplicity, we omit the robot proprioceptive state and wrist
camera inputs, and set the action chunk length K to 8. We collect P real trajectories using the base policy,
and conduct experiments with P = 128 and P = 1280 to evaluate the scalability of our approach. These
trajectories are further used to fine-tune a world model, which predicts the next K = 8 frames given c = 4
conditioning frames and one action chunk. In addition, we train reward models on the collected trajectories,
using a video clip length of L = 8 and a stride of 1 during evaluation. Further training details are provided in
Appendix A.

Simulation Environment Details We conduct experiments in the Mimicgen simulation [23]. We select
four fine-grained manipulation tasks: Coffee_D0, StackThree_D0, ThreePieceAssembly_D0, and Square_D0,
and fine-tune the OpenVLA-OFT model with 300 expert trajectories per task as the base policy. For evaluation,
we test 128 different initial states for each task and report the average success rate.

Table 1 Comparison of policy optimization methods across four manipulation tasks in the Mimicgen simulation
benchmark. P denotes the rollout budget, i.e., the number of full real trajectories available for policy optimization.
Results show that WMPO consistently outperforms both GRPO and DPO baselines under different budgets. As the
rollout budget increases from 128 to 1280, WMPO continues to exhibit substantial improvements, highlighting both its
data efficiency and scalability. Performance is reported as the task success rate (%).

Rollout budget P Methods Coffee StackThree ThreePieceAssembly Square Mean (%)

– Base policy 43.8 46.9 19.5 24.2 33.6

128
GRPO 38.3 52.3 17.2 25.0 33.2
DPO 43.8 53.9 23.4 28.1 37.3
Ours 61.7 56.3 37.5 32.8 47.1

1280
GRPO 47.7 54.7 20.3 25.8 37.1
DPO 52.3 57.0 26.7 33.6 42.4
Ours 75.0 64.1 46.1 45.3 57.6
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Figure 4 (a) For the Square task, we vary the stick’s position from fixed to a random position inside a rectangle. (b) For
the StackThree task, we substitute the tabletop background with a gray background. (c) For the ThreePieceAssembly
task, we substitute the red base with a dark wooden base.

4.2 Comparison Experiments

We compare WMPO with two established RL algorithms, GRPO [30] and DPO [28], both widely used for
optimizing large language models. To ensure fairness, all methods are allocated the same real rollout budget
P . We consider both online and offline baselines: GRPO is implemented in an online setting, where the policy
is updated directly from trajectories collected in the environment; DPO is implemented in an offline setting,
where the base policy serves as the reference and trajectory pairs (success vs. failure) are constructed for
optimization using the standard DPO loss. Unlike GRPO, which discards trajectories after each update, DPO
can repeatedly reuse collected data, but it lacks the ability to update the policy online as WMPO does. More
implementation details are provided in Appendix B.

As shown in Tab. 1, WMPO consistently outperforms all baselines across all tasks. With a small rollout budget
of P=128, it already surpasses the strongest baseline by +9.8 points, demonstrating strong data efficiency.
When the budget increases to P=1280, the margin further expands to +15.2 points on average, indicating that
WMPO leverages additional trajectories more effectively than existing methods and scales robustly with more
rollouts. In contrast, GRPO often underperforms with limited updates, and DPO plateaus due to static data
reuse, whereas WMPO continues to improve steadily as the rollout budget grows. Furthermore, we evaluate
the reward model and find that it achieves an F1 score above 0.95 across all tasks, reliably distinguishing
success from failure and effectively mitigating reward hacking. These results highlight the effectiveness and
scalability of WMPO for policy optimization in robotic manipulation.

4.3 Emergent Behavior of WMPO

To better understand the source of WMPO’s strong performance, we conduct a visual comparison of its
test-time behavior against the base policy. We identify two emergent behaviors unique to WMPO: (1) the
WMPO policy learns to self-correct, recovering from nearly failure states; and (2) the WMPO policy executes
tasks more efficiently, as it rarely becomes “stuck” in suboptimal states.

First, taking the Square task as an illustrative example (see Fig. 3), we observe that when both the base
policy and WMPO deviate from the correct trajectory due to error accumulation and encounter a collision,
their behaviors diverge. The baseline policy, trained only on expert demonstrations, has never observed
collisions during training; it continues to push the square against the stick until the maximum time horizon is
reached, resulting in failure. In contrast, WMPO benefits from large-scale imagined trajectories generated by
the world model, enabling it to learn the self-correction behaviors, which is challenging to obtain through
imitation learning alone. Specifically, the policy autonomously learns to lift the square, realign it, and then
insert it correctly, ultimately succeeding in the task. Second, we analyzed the lengths of successful trajectories
generated by different policies, as shown in Fig. 5. We found that the trajectories of policies trained with
WMPO are significantly shorter. This is because WMPO discourages stuck behaviors, which often result in
failures due to timeouts. As a side benefit, WMPO also makes the policy’s behavior faster and smoother.

4.4 Generalization to Novel Tasks
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Table 2 We evaluate each policy in its cor-
responding disruption scenario and report the
success rate (%).

Methods Pos. Dis. Bg. Dis. Tex. Dis. Mean

Base policy 14.1 46.1 10.9 23.7
GRPO 15.6 47.7 10.9 24.7
DPO 16.4 34.4 7.8 19.5

Ours 22.3 50.0 16.4 29.6

In this section, we evaluate the generalization ability of
WMPO across three novel disruption scenarios (Fig. 4), which
systematically assess generalization under spatial, background,
and texture shifts. As shown in Tab. 2, WMPO consistently
achieves the best performance across all disruption types.
DPO attains modest improvements in the in-distribution set-
ting compared to the base policy, but its performance degrades
significantly under background and texture changes, suggest-
ing reliance on spurious visual cues rather than transferable
manipulation skills. GRPO exhibits performance similar to
the base policy, and both are worse than WMPO across all disruption scenarios. In contrast, WMPO, trained
entirely in the world model, captures more generalizable strategies and maintains reliable performance across
spatial, background, and texture variations.
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Figure 5 Relative average trajectory length of successful trials
across different policies (Base Policy = 100%).
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Figure 6 Lifelong learning results of
WMPO and baselines.

Real World Trajectory

Imagined Trajectory

Figure 7 Real-world experiments on the fine-grained manipulation task “Insert the square into the stick" where the
clearance between the square and the stick is only 5 mm. The top row shows the real-world trajectory of the base
policy executed in the real world, while the bottom row depicts the corresponding imagined trajectory starting from
the same initial state within our learned world model. Despite never observing this trajectory during training, the
world model accurately predicts the future evolution, demonstrating its ability to capture precise task dynamics.

4.5 Lifelong Learning

In this section, we demonstrate that WMPO can continuously improve the performance of VLA by iteratively
collecting real trajectories from the environment. Specifically, we iteratively collect P = 128 real trajectories,
perform WMPO to optimize the policy, and then use the updated policy to collect another P real trajectories.
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We apply the same setting to the DPO baseline. To compare WMPO with an imitation learning-based policy
using more expert demonstrations, we leverage 300, 428, and 556 expert trajectories to train the base policy
as a reference. It is important to note that the base policy requires human-collected trajectories, whereas
WMPO only relies on trajectories collected by the policy itself, making it more scalable. The results on the
StackThree task, shown in Fig. 6, demonstrate that WMPO achieves stable and substantial improvements
over both baselines, whereas DPO fails to improve iteratively due to unstable training.

4.6 Real-world Experiments

In this section, we evaluate the challenging real-world manipulation task, “Insert the square into the stick" (see
Fig. 7, more cases including failure could be found in Appendix C), to validate the effectiveness of WMPO.
Using the Cobot Mobile ALOHA platform, we collect 200 high-quality expert demonstrations to fine-tune the
OpenVLA-OFT model as the base policy. We then deploy this policy to collect an additional 128 trajectories,
which are used to further fine-tune the world model and optimize the policy within it. For comparison, we also
train an offline DPO policy using the same dataset. All models are evaluated under identical experimental
conditions, and we report the average success rate over 30 trials. The results show that the base policy, DPO,
and WMPO achieve success rates of 53%, 60%, and 70%, respectively, demonstrating the effectiveness of
WMPO on real robots.

5 Conclusion

In this work, we introduced WMPO, a novel framework for on-policy RL of VLA models. By grounding policy
optimization entirely in a video-generative world model, WMPO eliminates the need for costly real-world
interactions while maintaining consistency with pretrained VLA representations. Through policy behavior
alignment, robust autoregressive video generation, and a lightweight reward model, WMPO enables scalable
training with strong sample efficiency. Extensive experiments in both simulation and real-world settings
demonstrated that WMPO (i) consistently outperforms state-of-the-art model-free baselines, (ii) exhibits
emergent self-correction behavior, (iii) generalizes reliably to unseen scenarios, and (iv) supports iterative
lifelong learning. Together, these findings highlight WMPO as a scalable and generalizable paradigm for
advancing VLA RL.
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Appendix

A Training Details

In this section, we provide the training details of WMPO. The supervised finetuning of OpenVLA-OFT is
conducted on 8 H100 GPUs. We exclude robot proprioceptive states and wrist camera inputs for simplicity.
Instead of applying L1 regression, we adopt an output head that predicts discrete action tokens in parallel.
The subsequent world model training and policy optimization are performed on 32 H100 GPUs.

The world model is first pretrained on the Open X-Embodiment (OXE) dataset [21] and then fine-tuned on
downstream policy behavior data. Table 3 summarizes the hyperparameters for training the world model,
while the remaining settings follow OpenSora [35]. The hyperparameters for policy optimization with GRPO
are provided in Tab. 4, with other settings inherited from Li et al. [11].

Algorithm 1: World Model Policy Optimization
Input : World model pϕ, reward model Rψ, VLA policy πθ; group size G; batch size B (trajectories);

mini-batch size M (M | B); epochs E; horizon T
Output : Updated policy parameters θ
θold ← θ
while not converged do

B ← ∅
while |B| < B do

Sample initial state s0 = (I0:c, g) ∼ D
for i = 1 to G do

Imagine τi = {(sit, ait)}Tt=0 ∼ pθ(τi | s0, πθold)
Ri ← R(τi) ∈ {0, 1}

if all(R1, . . . , RG) or none(R1, . . . , RG) then
continue

µ← 1
G

∑G
i=1 Ri, σ ←

√
1
G

∑G
i=1(Ri − µ)2

for i = 1 to G do

Âi ← (Ri − µ)/σ

Precompute {log πθold(ait|sit)}Tt=0

Append (τi, Âi) to B
if |B| ≥ B then

break

for e = 1 to E do

for j = 1 to B/M do

M← j-th contiguous block of M trajectories from B
Update θ according to Eq. 4, where ri,t(θ) = exp

(
log πθ(ai,t|si,t)− log πθold(ai,t|si,t)

)
θold ← θ

B Baseline Details

We provide the implementation details of our baselines, including online GRPO and offline DPO. For the
GRPO baseline, the main hyperparameters are inherited from Tab. 4. We observe that the batch size has a
significant impact on performance. Larger batch sizes (e.g., 64) yield more stable improvements; however,
they require a substantial number of real trajectories. Specifically, a single model update requires at least
64× 8 = 512 real trajectories. Moreover, dynamic sampling further filters out groups with a success rate of 0
or 1. As a result, when the rollout budget is P = 128, such large batch sizes are infeasible, and even with
P = 1280, the model can only be updated once or twice. Therefore, we additionally experimented with a
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smaller batch size of 8, scaling the learning rate down proportionally (by a factor of 8). We report the best
results obtained across both configurations (batch size = 8 and = 64).

For the DPO baseline, we follow the standard preference-based offline training paradigm. Specifically, we
construct a preference dataset from trajectories collected by the supervised fine-tuned OpenVLA-OFT model
and use it to optimize the policy with the DPO objective. The model architecture and optimizer settings
are kept consistent with those used in GRPO for fair comparison. All baselines were trained under the same
rollout budgets and evaluation protocols as WMPO to ensure fairness.

C Real World Cases

In this section, we provide additional examples of trajectory predictions made by the world model in real-world
settings. Fig 8 illustrates cases where the world model successfully predicts failure trajectories: it has learned
that when the square and the stick are misaligned, the square cannot be inserted into the stick. In contrast,
Fig 9 shows a failure case where the model does not correctly predict a failed trajectory. Although predictions
remain accurate until the final frame, subtle perturbations prevent the model from faithfully capturing the
moment when the square gets stuck in the stick. Empirically, such failures are relatively rare on the validation
set, indicating that the world model can reliably predict both successful and failed outcomes in the vast
majority of scenarios, which is crucial for stable policy optimization.

D Limitation

While the WMPO framework can in principle support flow-based policies, this work focuses on discretized
action representations. As future work, we plan to extend WMPO to more expressive policy classes, such as
flow-matching based policies [25], and explore policy optimization with FlowGRPO [45], thereby broadening
its applicability across diverse action spaces.

E LLM Usage Statement

GPT-5 was used solely to assist with language refinement and stylistic polishing of the manuscript. The
authors confirm that all scientific ideas, study design, data analyses, and conclusions presented in this work
are entirely their own. The LLM did not contribute to the generation of research concepts, execution of
experiments, or interpretation of findings.

Hyperparameter Value

Optimizer AdamW(β = 0.9, β = 0.999)
Learning rate 0.0001

Batch size 128
Gradient clip 0.1

Pretrain training steps 12,000,000
Fine-tune training steps 3,000,000

EMA 0.9999
Weight decay 0.0

Prediction target ϵ

Table 3 Hyperparameters for training the world model.
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Hyperparameter Value

Optimizer AdamW(β = 0.9, β = 0.999)
Learning rate 5× 10−6

Training batch size 64
Group size G 8
Mini-batch size 128
Clip ratio ϵlow 0.20
Clip ratio ϵhigh 0.28
Temperature 1.6

Table 4 Hyperparameters for the GRPO algorithm.

Real World Trajectory

Imagined Trajectory

Figure 8 Real-world experiments on the fine-grained manipulation task “Insert the square into the stick". The top
row shows the rollout trajectory of the base policy executed in the real world, while the bottom row depicts the
corresponding imagined trajectory starting from the same initial state within our learned world model. The world
model successfully predicted failure cases.

Real World Trajectory

Imagined Trajectory

Figure 9 Example of a failure case. Although the predicted trajectory remains accurate until the final frame, the
model fails to capture the square getting stuck in the stick due to subtle perturbations.
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